Bacterial Degradation of 4-Hydroxyphenylacetic Acid and Homoprotocatechuic Acid

Author:

Sparnins Velta L.1,Chapman Peter J.1,Dagley Stanley1

Affiliation:

1. Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55101

Abstract

A species of Acinetobacter and two strains of Pseudomonas putida when grown with 4-hydroxyphenylacetic acid gave cell extracts that converted 3,4-dihydroxyphenylacetic acid (homoprotocatechuic acid) into carbon dioxide, pyruvate, and succinate. The sequence of enzyme-catalyzed steps was as follows: ring-fission by a 2,3-dioxygenase, nicotinamide adenine dinucleotide-dependent dehydrogenation, decarboxylation, hydration, aldol fission, and oxidation of succinic semialdehyde. Two new metabolites, 5-carboxymethyl-2-hydroxymuconic acid and 2-hydroxyhepta-2,4-diene-1,7-dioic acid, were isolated from reaction mixtures and a third, 4-hydroxy-2-ketopimelic acid, was shown to be cleaved by extracts to give pyruvate and succinic semialdehyde. Enzymes of this metabolic pathway were present in Acinetobacter grown with 4-hydroxyphenylacetic acid but were effectively absent when 3-hydroxyphenylacetic acid or phenylacetic acid served as sources of carbon.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3