Correlation between patterns of DNase I-hypersensitive sites and upstream promoter activity of the human epsilon-globin gene at different stages of erythroid development.

Author:

Bushel P,Rego K,Mendelsohn L,Allan M

Abstract

DNA 5' to the human epsilon-globin gene exhibits unique patterns of DNase I-hypersensitive sites (DHS) in three human erythroleukemic cell lines which represent the embryonic (K562), fetal (HEL), and adult (KMOE) stages of erythroid development. We have mapped 10 epsilon-globin DHS in K562 cells, in which the epsilon-globin gene is maximally active. Major sites are located -11.7, -10.5, -6.5, -2.2 kilobase pairs (kbp) and -200 base pairs (bp) upstream of the gene and directly over the major cap site. Minor sites are located -5.5, -4.5, and -1.48 kbp and -900 bp upstream of the cap site. In HEL cells, in which the epsilon-globin gene is expressed at extremely low levels, the -11.7-, -10.5-, -5.5-, -4.5-, and -2.2-kbp DHS are no longer detectable; the -200-bp site is approximately 300-fold less sensitive to DNase I; and the -1.48-kbp, -900-bp, and major cap site DHS are 3- to 4-fold less sensitive. Only the DHS located -6.5 kbp relative to the major cap site is detectable at all three stages of erythroid development, including KMOE cells in which epsilon-globin synthesis is undetectable. We suggest that this site may be implicated in maintaining the entire beta-globin cluster in an active chromatin conformation. The five DHS downstream of the -6.5-kbp element possess associated promoters. Thus two distinct types of DHS exist--promoter positive and promoter negative. In HEL cells, all the upstream promoters are inactivated, although the -1.48-kbp and -900- and -200-bp DHS are still present. This suggests that the maintenance of DHS and regulation of their associated promoters occur by independent mechanisms. The inactivation of the upstream promoters in HEL cells while the major cap site remains active represents a unique pattern of expression and suggests that HEL cells possess regulatory factors which specifically down regulate the epsilon-globin upstream promoters.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3