The Minor Pilin Subunit Sgp2 Is Necessary for Assembly of the Pilus Encoded by the srtG Cluster of Streptococcus suis

Author:

Okura Masatoshi1,Osaki Makoto1,Fittipaldi Nahuel2,Gottschalk Marcelo2,Sekizaki Tsutomu3,Takamatsu Daisuke14

Affiliation:

1. Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan

2. Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec J2S 7C6, Canada

3. OIE Collaborating Centre for Food Safety, Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan

4. The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan

Abstract

ABSTRACT Gram-positive pili are composed of covalently bound pilin subunits whose assembly is mediated via a pilus-specific sortase(s). Major subunits constitute the pilus backbone and are therefore essential for pilus formation. Minor subunits are also incorporated into the pilus, but they are considered to be dispensable for backbone formation. The srtG cluster is one of the putative pilus gene clusters identified in the major swine pathogen Streptococcus suis . It consists of one sortase gene ( srtG ) and two putative pilin subunit genes ( sgp1 and sgp2 ). In this study, by constructing mutants for each of the genes in the cluster and by both immunoblotting and immunogold electron microscopic analysis with antibodies against Sgp1 and Sgp2, we found that the srtG cluster mediates the expression of pilus-like structures in S. suis strain 89/1591. In this pilus, Sgp1 forms the backbone, whereas Sgp2 is incorporated as the minor subunit. In accordance with the current model of pilus assembly by Gram-positive organisms, the major subunit Sgp1 was indispensable for backbone formation and the cognate sortase SrtG mediated the polymerization of both subunits. However, unlike other well-characterized Gram-positive bacterial pili, the minor subunit Sgp2 was required for polymerization of the major subunit Sgp1. Because Sgp2 homologues are encoded in several other Gram-positive bacterial pilus gene clusters, in some types of pili, minor pilin subunits may contribute to backbone formation by a novel mechanism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3