Targeted curation of the gut microbial gene content modulating human cardiovascular disease

Author:

Borton Mikayla A.1,Shaffer Michael1,Hoyt David W.2,Jiang Ruisheng3,Ellenbogen Jared B.3,Purvine Samuel2,Nicora Carrie D.2,Eder Elizabeth K.2,Wong Allison R.2,Smulian A. George4,Lipton Mary S.2,Krzycki Joseph A.3,Wrighton Kelly C.1ORCID

Affiliation:

1. Department of Soil and Crop Sciences, Colorado State University , Fort Collins, Colorado, USA

2. Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory , Richland, Washington, USA

3. Department of Microbiology, The Ohio State University , Columbus, Ohio, USA

4. Department of Internal Medicine, University of Cincinnati , Cincinnati, Ohio, USA

Abstract

ABSTRACT Despite the promise of the gut microbiome to predict human health, few studies expose the molecular-scale processes underpinning such forecasts. We mined over 200,000 gut-derived genomes from cultivated and uncultivated microbial lineages to inventory the gut microorganisms and their gene content that control trimethylamine-induced cardiovascular disease. We assigned an atherosclerotic profile to the 6,341 microbial genomes that encoded metabolisms associated with heart disease, creating the Methylated Amine Gene Inventory of Catabolism database (MAGICdb). From microbiome gene expression data sets, we demonstrate that MAGICdb enhanced the recovery of disease-relevant genes and identified the most active microorganisms, unveiling future therapeutic targets. From the feces of healthy and diseased subjects, we show that MAGICdb predicted cardiovascular disease status as effectively as traditional lipid blood tests. This functional microbiome catalog is a public, exploitable resource, designed to enable a new era of microbiota-based therapeutics and diagnostics. IMPORTANCE One of the most-cited examples of the gut microbiome modulating human disease is the microbial metabolism of quaternary amines from protein-rich foods. By-products of this microbial processing promote atherosclerotic heart disease, a leading cause of human mortality globally. Our research addresses current knowledge gaps in our understanding of this microbial metabolism by holistically inventorying the microorganisms and expressed genes catalyzing critical atherosclerosis-promoting and -ameliorating reactions in the human gut. This led to the creation of an open-access resource, the Methylated Amine Gene Inventory of Catabolism database, the first systematic inventory of gut methylated amine metabolism. More importantly, using this resource we deliver here, we show for the first time that these gut microbial genes can predict human disease, paving the way for microbiota-inspired diagnostics and interventions.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3