Affiliation:
1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract
Enhanced levels of cytoplasmic Ca2+ due to membrane depolarization with elevated levels of KCl or exposure to the Ca2+ ionophore ionomycin stimulate serum response element (SRE)-dependent transcription in the pheochromocytoma cell line PC12. By using altered binding specificity mutants of transcription factors that bind to the SRE, it was demonstrated that in contrast to treatment with purified growth factors, such as nerve growth factor, the serum response factor (SRF), but not Elk-1, mediates Ca(2+)-regulated SRE-dependent transcription. Enhanced levels of cytoplasmic Ca2+ were found to trigger SRE-dependent transcription via a Ras-independent signaling pathway that appears to involve a Ca2+/calmodulin-dependent kinase (CaMK). Overexpression of a constitutively active form of CaMKIV stimulated SRF-dependent transcription. Taken together, these findings indicate that SRF is a versatile transcription factor that, when bound to the SRE, can function by distinct mechanisms and can mediate transcriptional responses to both CaMK- and Ras-dependent signaling pathways.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
168 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献