Characterization of fus1 of Schizosaccharomyces pombe: a developmentally controlled function needed for conjugation

Author:

Petersen J1,Weilguny D1,Egel R1,Nielsen O1

Affiliation:

1. Department of Genetics, University of Copenhagen, Denmark.

Abstract

In Schizosaccharomyces pombe, the fus1 mutation blocks conjugation at a point after cell contact and agglutination. The cell walls separating the mating partners are not degraded, which prevents cytoplasmic fusion. In order to investigate the molecular mechanism of conjugation, we cloned the fus1 gene and found that it is capable of encoding a 1,372-amino-acid protein with no significant similarities to other known proteins. Expression of the fus1 gene is regulated by the developmental state of the cells. Transcription is induced by nitrogen starvation and requires a pheromone signal in both P and M cell types. Consequently, mutants defective in the pheromone response pathway fail to induce fus1 expression. The ste11 gene, which encodes a transcription factor controlling expression of many genes involved in sexual differentiation, is also required for transcription of fus1. Furthermore, deletion of two potential Ste11 recognition sites in the fus1 promoter region abolished transcription, and expression could be restored when we inserted a different Ste11 site from the mat1-P promoter. Since this element was inverted relative to the fus1 element, we conclude that activation of transcription by Ste11 is independent of orientation. Although the fus1 mutant has a phenotype very similar to that of Saccharomyces cerevisiae fus1 mutants, the two proteins appear to have different roles in the process of cell fusion. Budding yeast Fus1 is a typical membrane protein and contains an SH3 domain. Fission yeast Fus1 has no features of a membrane protein, yet it appears to localize to the projection tip. A characteristic proline-rich potential SH3 binding site may mediate interaction with other proteins.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3