Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice

Author:

Kwon-Chung K J,Polacheck I,Popkin T J

Abstract

A double mutant of Cryptococcus neoformans which lacked the ability to produce melanin (Mel-) on media containing diphenols and failed to grow at 37 degrees C (temperature sensitive, Tem-) was obtained by UV irradiation and subsequent cloning. The mutant showed two lesions in melanogenesis in that it lacked the active transport system for diphenolic compounds and also lacked phenoloxidase. Ultrastructures of the mutant and wild-type cells grown on a medium with or without L-dopa showed that only the wild-type cells grown on L-dopa medium formed a dark cell wall layer, presumably containing melanin. The mutant was crossed with a wild type, and the phenotypes of the progeny were analyzed. The analysis showed no linkage between the mating type and either Mel or Tem loci, but loose linkage was seen between Mel and Tem loci. The progeny, Mel+ Tem+, Mel+ Tem-, Mel- Tem+, and Mel- Tem-, were studied for their virulence in mice. Only Mel+ Tem+ types killed mice with an inoculum of 5 X 10(5) cells within 50 days.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference32 articles.

1. The distribution of dopamine and dopa in various animals and a method for their determination in diverse biological material;Anton A. H.;J. Pharmacol. Exp. Ther.,1964

2. Melanin and resistance of fungi to Iysis;Bloomfield B. J.;J. Bacteriol.,1966

3. Ecology and physiology of Cryptococcus neoformans in Georgia;Bowman P. I.;Pan Am. Health Org. Sci. Publ.,1978

4. Diagnostic and prognostic value of clinical and laboratory findings in cryptococcal meningitis;Butler W. T.;N. Engl. J. Med.,1964

5. Pigment production by Cryptococcus neoformans from para- and ortho-diphenols: effect of the nitrogen source;Chasakes S.;J. Clin. Microbiol.,1975

Cited by 289 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3