Strain-Specific Regulatory Role of Eukaryote-Like Serine/Threonine Phosphatase in Pneumococcal Adherence

Author:

Agarwal Shivangi,Agarwal Shivani,Pancholi Preeti,Pancholi Vijay

Abstract

ABSTRACTStreptococcus pneumoniaeexploits a battery of virulence factors to colonize the host. Although the eukaryote-like Ser/Thr kinase ofS. pneumoniae(StkP) has been implicated in physiology and virulence, the role of its cotranscribing phosphatase (PhpP) has remained elusive. The construction of nonpolar markerlessphpPknockout mutants (ΔphpP) in two pathogenic strains, D39 (type 2) and 6A-EF3114 (type 6A), indicated that PhpP is not indispensable for pneumococcal survival. Further, PhpP also participates in the regulation of cell wall biosynthesis/division, adherence, and biofilm formation in a strain-specific manner. Additionally, we provide hitherto-unknownin vitroandin vivoevidence of a physiologically relevant biochemical link between the StkP/PhpP-mediated cognate regulation and the two-component regulatory system TCS06 (RR06/HK06) that regulates the expression of the gene encoding an important pneumococcal surface adhesin, CbpA, which was found to be significantly upregulated in ΔphpPmutants. In particular, StkP (threonine)-phosphorylated RR06 bound to thecbpApromoter with high efficiency even in the absence of the HK06-responsive and catalytically active aspartate 51 residue. Together, our findings unravel the significant contributions of PhpP in pneumococcal physiology and adherence.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3