Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus Phlebovirus

Author:

Simons J F1,Hellman U1,Pettersson R F1

Affiliation:

1. Stockholm Branch, Ludwig Institute for Cancer Research, Sweden.

Abstract

We determined the complete nucleotide sequence of the small (S) RNA segment of Uukuniemi virus, the prototype of the Uukuvirus genus within the Bunyaviridae family. The RNA, which is 1,720 nucleotides long, contains two nonoverlapping open reading frames. The 5' end of one strand (complementary to the viral strand) encodes the nonstructural protein NSs (273 residues; molecular weight, 32,019), whereas the 5' end of the viral-sense strand encodes the nucleocapsid protein N (254 residues; molecular weight, 28,508). Thus, the S RNA uses an ambisense coding strategy previously described for the S segment of two phleboviruses and the arenaviruses. The localization of the N protein within the S RNA sequence was confirmed by amino-terminal sequence analysis of all five possible cyanogen bromide fragments obtained from purified N protein. Northern (RNA) blot analyses with strand-specific probes showed that the N and NSs proteins are translated from subgenomic mRNAs about 800 and 850 nucleotides long, respectively. These mRNAs are apparently transcribed from full-length S RNAs of opposite polarities. The two mRNA species were also detected in virus-infected cells. Interestingly, highly purified virions contained full-length S RNA copies of both polarities at a ratio of about 10:1. In contrast, virions contained exclusively negative-strand copies of the M RNA segment. The possible significance of these results for viral infection is discussed. The amino acid sequence of the N protein showed 35 and 32% homology (identity) with the N protein of Punta Toro and sandfly fever Sicilian viruses, two members of the Phlebovirus genus. The NSs proteins were much less related (about 15% identity). In addition, the extreme 5' and 3' ends of the S RNA, which are complementary to each other, also showed a high degree of conservation with the two phleboviruses. These results indicate that the uukuviruses and phleboviruses are evolutionarily related and suggest that the two genera could be merged into a single genus within the Bunyaviridae family.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference32 articles.

1. Comparison of the sequences and coding of La Crosse and snowshoe hare bunyavirus S RNA species;Akashi H.;J. Virol.,1983

2. Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA;Auperin D. D.;J. Virol.,1984

3. Methylmercury as a reversible denaturing agent for agarose gel electrophoresis;Bailey J. M.;Anal. Biochem.,1976

4. New structures in viral RNA: non-covalent circles and covalently linked proteins;Baltimore D.;Perspect. Virol.,1978

5. Bishop D. H. L. 1985. Replication of arenaviruses and bunyaviruses p. 1083-1110. In B. N. Fields et al. (ed.) Virology. Raven Press New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3