The E6/E7 promoter of human papillomavirus type 16 is activated in the absence of E2 proteins by a sequence-aberrant Sp1 distal element

Author:

Gloss B1,Bernard H U1

Affiliation:

1. Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge, Republic of Singapore.

Abstract

The E6/E7 promoter of all genital human papillomaviruses is responsible for expression of the viral transforming genes. Centered 60 bp upstream of the transcription start, it contains a 20-bp segment with partially overlapping binding sites for the viral E2 proteins and for a cellular factor that was identified by footprint experiments. Bandshifts, bandshift competitions, and footprints revealed that protein complexes between nuclear extracts and these sequences have binding properties indistinguishable from those of the Sp1 factor that binds the simian virus 40 early promoter GC motif. Reactions of these complexes with anti-Sp1 antiserum were analyzed by superbandshifts and precipitation with protein A, and the results confirmed the identity of this transcription factor as Sp1. Sp1 binds in simian virus 40 and different human papillomavirus promoters the consensus sequence 5'-NGGNGN-3'. RNase protection analysis of in vitro or in vivo transcriptions with wild-type and mutant test vectors shows that the E6/E7 promoter of human papillomavirus type 16 is functionally dependent on the Sp1 distal promoter element. In all genital papillomaviruses, the Sp1 hexamer is invariably spaced by a single nucleotide from the distal E2 element, suggesting some precise interaction between Sp1 and E2 proteins. Published experimental evidence documents negative regulation of the E6/E7 promoter by E2 proteins through the proximal E2 element, whereas only minor quantitative differences in E6/E7 promoter function after cotransfection with E2 expression vectors were observed in this study. A detailed study of the interactions of Sp1 and E2 proteins with one another and with the corresponding three binding sites may reveal a complex modulation of this promoter.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3