NS35 and not vp7 is the soluble rotavirus protein which binds to target cells

Author:

Bass D M1,Mackow E R1,Greenberg H B1

Affiliation:

1. Department of Medicine, Stanford University School of Medicine, California.

Abstract

Recent studies using radiolabeled rotavirus lysates have demonstrated a 35-kilodalton viral protein that binds specifically to the surface of MA104 cells (N. Fukuhara, O. Yoshie, S. Kitakoa, and T. Konno, J. Virol. 62:2209-2218, 1988; M. Sabara, J. Gilchrist, G.R. Hudson, and L.A. Babiuk, J. Virol. 53:58-66, 1985). The binding protein was identified as vp7, an outer capsid glycoprotein and the product of rotavirus gene 9. These studies concluded that vp7 mediated viral attachment to MA104 cells and that the binding of a soluble viral protein to a cell monolayer mirrored the attachment of infectious rotavirus to permissive tissue culture cells. In the process of determining which viral protein adheres to the in vivo target cell in rotavirus infection, the mammalian enterocyte, we found that a similar 35-kilodalton rhesus rotavirus (RRV) protein bound to both MA104 cells and murine enterocytes. However, further analysis of this protein by immunoprecipitation, inhibition of glycosylation, and partial proteolysis showed that it was not the RRV gene 9 product, vp7, but the gene 8 product, NS35. Similar results were obtained by using porcine rotavirus (OSU) and bovine rotavirus (NCDV) strains. Binding studies using the in vitro-expressed products of RRV genes 8 and 9 confirmed these results. Since double-shelled virions inhibited the binding of NS35 to cells, we looked for the presence of this protein in preparations of purified virus. Examination of density gradient-purified virus preparations revealed biochemical and immunological evidence that NS35 copurifies in small amounts with double-shelled virions. Thus, these studies clearly demonstrated that when rotavirus proteins are prepared in a soluble form from infected cells, NS35, and not vp7, binds to the surfaces of MA104 cells and murine enterocytes. The observations do not confirm previous experimental results which supported the hypothesis that vp7 was the viral attachment protein. They are consistent with but do not prove the hypothesis that NS35 functions as the rotavirus attachment protein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3