Unique Biological Activity of Botulinum D/C Mosaic Neurotoxin in Murine Species

Author:

Nakamura Keiji,Kohda Tomoko,Shibata Yuto,Tsukamoto Kentaro,Arimitsu Hideyuki,Hayashi Mitsunori,Mukamoto Masafumi,Sasakawa Nobuyuki,Kozaki Shunji

Abstract

ABSTRACTClostridium botulinumtypes C and D cause animal botulism by the production of serotype-specific or mosaic botulinum neurotoxin (BoNT). The D/C mosaic BoNT (BoNT/DC), which is produced by the isolate from bovine botulism in Japan, exhibits the highest toxicity to mice among all BoNTs. In contrast, rats appeared to be very resistant to BoNT/DC in type C and D BoNTs and their mosaic BoNTs. We attempted to characterize the enzymatic and receptor-binding activities of BoNT/DC by comparison with those of type C and D BoNTs (BoNT/C and BoNT/D). BoNT/DC and D showed similar toxic effects on cerebellar granule cells (CGCs) derived from the mouse, but the former showed less toxicity to rat CGCs. In recombinant murine-derived vesicle-associated membrane protein (VAMP), the enzymatic activities of both BoNTs to rat isoform 1 VAMP (VAMP1) were lower than those to the other VAMP homologues. We then examined the physiological significance of gangliosides as the binding components for types C and D, and mosaic BoNTs. BoNT/DC and C were found to cleave an intracellular substrate of PC12 cells upon the exogenous addition of GM1a and GT1b gangliosides, respectively, suggesting that each BoNT recognizes a different ganglioside moiety. The effect of BoNT/DC on glutamate release from CGCs was prevented by cholera toxin B-subunit (CTB) but not by a site-directed mutant of CTB that did not bind to GM1a. Bovine adrenal chromaffin cells appeared to be more sensitive to BoNT/DC than to BoNT/C and D. These results suggest that a unique mechanism of receptor binding of BoNT/DC may differentially regulate its biological activities in animals.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3