GroEL Plays a Central Role in Stress-Induced Negative Regulation of Bacterial Conjugation by Promoting Proteolytic Degradation of the Activator Protein TraJ

Author:

Zahrl Doris1,Wagner Andrea1,Tscherner Michael1,Koraimann Günther1

Affiliation:

1. Institut für Molekulare Biowissenschaften, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria

Abstract

ABSTRACT Transcription of DNA transfer genes is a prerequisite for conjugative DNA transfer of F-like plasmids. Transfer gene expression is sensed by the donor cell and is regulated by a complex network of plasmid- and host-encoded factors. In this study we analyzed the effect of induction of the heat shock regulon on transfer gene expression and DNA transfer in Escherichia coli . Raising the growth temperature from 22°C to 43°C transiently reduced transfer gene expression to undetectable levels and reduced conjugative transfer by 2 to 3 orders of magnitude. In contrast, when host cells carried the temperature-sensitive groEL44 allele, heat shock-mediated repression was alleviated. These data implied that the chaperonin GroEL was involved in negative regulation after heat shock. Investigation of the role of GroEL in this regulatory process revealed that, in groEL (Ts) cells, TraJ, the plasmid-encoded master activator of type IV secretion (T4S) system genes, was less susceptible to proteolysis and had a prolonged half-life compared to isogenic wild-type E. coli cells. This result suggested a direct role for GroEL in proteolysis of TraJ, down-regulation of T4S system gene expression, and conjugation after heat shock. Strong support for this novel role for GroEL in regulation of bacterial conjugation was the finding that GroEL specifically interacted with TraJ in vivo. Our results further suggested that in wild-type cells this interaction was followed by rapid degradation of TraJ whereas in groEL (Ts) cells TraJ remained trapped in the temperature-sensitive GroEL protein and thus was not amenable to proteolysis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3