Promoter Engineering Reveals the Importance of Heptameric Direct Repeats for DNA Binding by Streptomyces Antibiotic Regulatory Protein–Large ATP-Binding Regulator of the LuxR Family (SARP-LAL) Regulators in Streptomyces natalensis

Author:

Barreales Eva G.1,Vicente Cláudia M.1,de Pedro Antonio1,Santos-Aberturas Javier1,Aparicio Jesús F.1ORCID

Affiliation:

1. Area of Microbiology, Faculty of Biology, University of León, León, Spain

Abstract

ABSTRACT The biosynthesis of small-size polyene macrolides is ultimately controlled by a couple of transcriptional regulators that act in a hierarchical way. A Streptomyces antibiotic regulatory protein–large ATP-binding regulator of the LuxR family (SARP-LAL) regulator binds the promoter of a PAS-LuxR regulator-encoding gene and activates its transcription, and in turn, the gene product of the latter activates transcription from various promoters of the polyene gene cluster directly. The primary operator of PimR, the archetype of SARP-LAL regulators, contains three heptameric direct repeats separated by four-nucleotide spacers, but the regulator can also bind a secondary operator with only two direct repeats separated by a 3-nucleotide spacer, both located in the promoter region of its unique target gene, pimM . A similar arrangement of operators has been identified for PimR counterparts encoded by gene clusters for different antifungal secondary metabolites, including not only polyene macrolides but peptidyl nucleosides, phoslactomycins, or cycloheximide. Here, we used promoter engineering and quantitative transcriptional analyses to determine the contributions of the different heptameric repeats to transcriptional activation and final polyene production. Optimized promoters have thus been developed. Deletion studies and electrophoretic mobility assays were used for the definition of DNA-binding boxes formed by 22-nucleotide sequences comprising two conserved heptameric direct repeats separated by four-nucleotide less conserved spacers. The cooperative binding of PimR SARP appears to be the mechanism involved in the binding of regulator monomers to operators, and at least two protein monomers are required for efficient binding. IMPORTANCE Here, we have shown that a modulation of the production of the antifungal pimaricin in Streptomyces natalensis can be accomplished via promoter engineering of the PAS-LuxR transcriptional activator pimM . The expression of this gene is controlled by the Streptomyces antibiotic regulatory protein–large ATP-binding regulator of the LuxR family (SARP-LAL) regulator PimR, which binds a series of heptameric direct repeats in its promoter region. The structure and importance of such repeats in protein binding, transcriptional activation, and polyene production have been investigated. These findings should provide important clues to understand the regulatory machinery that modulates antibiotic biosynthesis in Streptomyces and open new possibilities for the manipulation of metabolite production. The presence of PimR orthologues encoded by gene clusters for different secondary metabolites and the conservation of their operators suggest that the improvements observed in the activation of pimaricin biosynthesis by Streptomyces natalensis could be extrapolated to the production of different compounds by other species.

Funder

Ministerio de Economía y Competitividad

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3