Regulation of MyD88-Dependent Signaling Events by S Nitrosylation Retards Toll-Like Receptor Signal Transduction and Initiation of Acute-Phase Immune Responses

Author:

Into Takeshi1,Inomata Megumi1,Nakashima Misako1,Shibata Ken-ichiro2,Häcker Hans3,Matsushita Kenji1

Affiliation:

1. Department of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo, Morioka, Obu, Aichi 474-8522, Japan

2. Laboratory of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan

3. Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105

Abstract

ABSTRACT Nitric oxide (NO) has been thought to regulate the immune system through S nitrosylation of the transcriptional factor NF-κB. However, regulatory effects of NO on innate immune responses are unclear. Here, we report that NO has a capability to control Toll-like receptor-mediated signaling through S nitrosylation. We found that the adaptor protein MyD88 was primarily S nitrosylated, depending on the presence of endothelial NO synthase (eNOS). S nitrosylation at a particular cysteine residue within the TIR domain of MyD88 resulted in slight reduction of the NF-κB-activating property. This modification could be restored by the antioxidant glutathione. Through S nitrosylation, NO could negatively regulate the multiple steps of MyD88 functioning, including translocation to the cell membrane after LPS stimulation, interaction with TIRAP, binding to TRAF6, and induction of IκBα phosphorylation. Interestingly, glutathione could reversely neutralize such NO-derived effects. We also found that an acute febrile response to LPS was precipitated in eNOS-deficient mice, indicating that eNOS-derived NO exerts an initial suppressive effect on inflammatory processes. Thus, NO has a potential to retard induction of MyD88-dependent signaling events through the reversible and oxidative modification by NO, by which precipitous signaling reactions are relieved. Such an effect may reflect appropriate regulation of the acute-phase inflammatory responses in living organisms.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3