The N-Terminal Membrane-Spanning Domain of the Escherichia coli DNA Translocase FtsK Hexamerizes at Midcell

Author:

Bisicchia Paola1,Steel Bradley2,Mariam Debela Mekdes H.3,Löwe Jan3,Sherratt David1

Affiliation:

1. Department of Biochemistry, University of Oxford, Oxford, United Kingdom

2. Department of Physics, University of Oxford, Oxford, United Kingdom

3. MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom

Abstract

ABSTRACT Bacterial FtsK plays a key role in coordinating cell division with the late stages of chromosome segregation. The N-terminal membrane-spanning domain of FtsK is required for cell division, whereas the C-terminal domain is a fast double-stranded DNA (dsDNA) translocase that brings the replication termination region of the chromosome to midcell, where it facilitates chromosome unlinking by activating XerCD- dif site-specific recombination. Therefore, FtsK coordinates the late stages of chromosome segregation with cell division. Although the translocase is known to act as a hexamer on DNA, it is unknown when and how hexamers form, as is the number of FtsK molecules in the cell and within the divisome. Using single-molecule live-cell imaging, we show that newborn Escherichia coli cells growing in minimal medium contain ~40 membrane-bound FtsK molecules that are largely monomeric; the numbers increase proportionately with cell growth. After recruitment to the midcell, FtsK is present only as hexamers. Hexamers are observed in all cells and form before any visible sign of cell constriction. An average of 7 FtsK hexamers per cell are present at midcell, with the N-terminal domain being able to hexamerize independently of the translocase. Detergent-solubilized and purified FtsK N-terminal domains readily form hexamers, as determined by in vitro biochemistry, thereby supporting the in vivo data. The hexameric state of the FtsK N-terminal domain at the division site may facilitate assembly of a functional C-terminal DNA translocase on chromosomal DNA. IMPORTANCE In the rod-shaped bacterium Escherichia coli , more than a dozen proteins act at the cell center to mediate cell division, which initiates while chromosome replication and segregation are under way. The protein FtsK coordinates cell division with the late stages of chromosome segregation. The N-terminal part of FtsK is membrane embedded and acts in division, while the C-terminal part forms a hexameric ring on chromosomal DNA, which the DNA can translocate rapidly to finalize chromosome segregation. Using quantitative live-cell imaging, which measures the position and number of FtsK molecules, we show that in all cells, FtsK hexamers form only at the cell center at the initiation of cell division. Furthermore, the FtsK N-terminal portion forms hexamers independently of the C-terminal translocase.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3