Bacteriophages as Pathogens and Immune Modulators?

Author:

Lengeling A.1,Mahajan A.1,Gally D. L.1

Affiliation:

1. The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom

Abstract

ABSTRACT While Shiga toxins (Stx) are key determinants of enterohemorrhagic Escherichia coli (EHEC) pathophysiology in humans, their dissemination to target organs following gastrointestinal EHEC infection is still poorly understood. Most types of Stx target cells with globotriaosylceramide (Gb3) receptors, which are expressed on endothelial cells. According to current theory, Stx is trafficked on the surface of peripheral blood cells, and transfer of toxin from these trafficking cells to endothelial cells results in microvascular damage to target organs, including the kidneys and brain. Inside the cell, Stx inhibits protein synthesis, resulting in cell death. Host “repair” responses can lead to microthrombus formation, erythrocyte damage, and reduced oxygen supply, potentially resulting in organ failure. A recent study [L. V. Bentancor et al., mBio 4(5):e00501-13, 2013, doi:10.1128/mBio.00501-13] indicates that another mechanism for Stx “dissemination” needs to be considered. Bentancor et al. demonstrated that high-pressure injection of a plasmid encoding the “prokaryotic” Stx2 sequence into mice can lead to mortality, with pathology indicative of Stx activity and antibody responses to Stx. While the plasmid levels and injection methodology were extreme, the study indicates that these sequences are potentially taken up into eukaryotic cells, transcribed, and translated, producing active Stx. Stx genes are present on integrated bacteriophage genomes in EHEC, and Stx-encoding phages are released following bacterial lysis in the gastrointestinal tract. We therefore need to consider whether bacteriophage sequences can be expressed in eukaryotic cells, what the wider implications are for our understanding of many “bacterial” diseases, and the possibility of developing novel interventions that target bacteriophages.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3