Genomic Dissection of an Icelandic Epidemic of Respiratory Disease in Horses and Associated Zoonotic Cases

Author:

Björnsdóttir Sigríður1,Harris Simon R.2,Svansson Vilhjálmur3,Gunnarsson Eggert3,Sigurðardóttir Ólöf G.3,Gammeljord Kristina4,Steward Karen F.5,Newton J. Richard5,Robinson Carl5,Charbonneau Amelia R. L.5,Parkhill Julian2ORCID,Holden Matthew T. G.26ORCID,Waller Andrew S.5

Affiliation:

1. MAST Icelandic Food and Veterinary Authority, Reykjavik, Iceland

2. Wellcome Trust Sanger Institute, Cambridgeshire, United Kingdom

3. Institute for Experimental Pathology, University of Iceland, Reykjavik, Iceland

4. University of Copenhagen, Copenhagen, Denmark

5. Animal Health Trust, Suffolk, United Kingdom

6. University of St. Andrews, Fife, United Kingdom

Abstract

ABSTRACT Iceland is free of the major infectious diseases of horses. However, in 2010 an epidemic of respiratory disease of unknown cause spread through the country’s native horse population of 77,000. Microbiological investigations ruled out known viral agents but identified the opportunistic pathogen Streptococcus equi subsp. zooepidemicus ( S. zooepidemicus ) in diseased animals. We sequenced the genomes of 257 isolates of S. zooepidemicus to differentiate epidemic from endemic strains. We found that although multiple endemic clones of S. zooepidemicus were present, one particular clone, sequence type 209 (ST209), was likely to have been responsible for the epidemic. Concurrent with the epidemic, ST209 was also recovered from a human case of septicemia, highlighting the pathogenic potential of this strain. Epidemiological investigation revealed that the incursion of this strain into one training yard during February 2010 provided a nidus for the infection of multiple horses that then transmitted the strain to farms throughout Iceland. This study represents the first time that whole-genome sequencing has been used to investigate an epidemic on a national scale to identify the likely causative agent and the link to an associated zoonotic infection. Our data highlight the importance of national biosecurity to protect vulnerable populations of animals and also demonstrate the potential impact of S. zooepidemicus transmission to other animals, including humans. IMPORTANCE An epidemic of respiratory disease affected almost the entire native Icelandic horse population of 77,000 animals in 2010, resulting in a self-imposed ban on the export of horses and significant economic costs to associated industries. Although the speed of transmission suggested that a viral pathogen was responsible, only the presence of the opportunistic pathogen Streptococcus zooepidemicus was consistent with the observed clinical signs. We applied genomic sequencing to differentiate epidemic from endemic strains and to shed light on the rapid transmission of the epidemic strain throughout Iceland. We further highlight the ability of epidemic and endemic strains of S. zooepidemicus to infect other animals, including humans. This study represents the first time that whole-genome sequencing has been used to elucidate an outbreak on a national scale and identify the likely causative agent.

Funder

Wellcome

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3