Isomaltose Production by Modification of the Fructose-Binding Site on the Basis of the Predicted Structure of Sucrose Isomerase from “ Protaminobacter rubrum ”

Author:

Lee Hyeon Cheol1,Kim Jin Ha1,Kim Sang Yong1,Lee Jung Kul2

Affiliation:

1. BioNgene Co., Ltd., 10-1, 1 Ka, Myungryun-Dong, Jongro-Ku, Seoul 110-521

2. Department of Chemical Engineering, Konkuk University, Seoul 143-701, Republic of Korea

Abstract

ABSTRACT Protaminobacter rubrum ” sucrose isomerase (SI) catalyzes the isomerization of sucrose to isomaltulose and trehalulose. SI catalyzes the hydrolysis of the glycosidic bond with retention of the anomeric configuration via a mechanism that involves a covalent glycosyl enzyme intermediate. It possesses a 325 RLDRD 329 motif, which is highly conserved and plays an important role in fructose binding. The predicted three-dimensional active-site structure of SI was superimposed on and compared with those of other α-glucosidases in family 13. We identified two Arg residues that may play important roles in SI-substrate binding with weak ionic strength. Mutations at Arg 325 and Arg 328 in the fructose-binding site reduced isomaltulose production and slightly increased trehalulose production. In addition, the perturbed interactions between the mutated residues and fructose at the fructose-binding site seemed to have altered the binding affinity of the site, where glucose could now bind and be utilized as a second substrate for isomaltose production. From eight mutant enzymes designed based on structural analysis, the R 325 Q mutant enzyme exhibiting high relative activity for isomaltose production was selected. We recorded 40.0% relative activity at 15% (wt/vol) additive glucose with no temperature shift; the maximum isomaltose concentration and production yield were 57.9 g liter −1 and 0.55 g of isomaltose/g of sucrose, respectively. Furthermore, isomaltose production increased with temperature but decreased at a temperature of >35°C. Maximum isomaltose production (75.7 g liter −1 ) was recorded at 35°C, and its yield for the consumed sucrose was 0.61 g g −1 with the addition of 15% (wt/vol) glucose. The relative activity for isomaltose production increased progressively with temperature and reached 45.9% under the same conditions.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3