Second-site suppressor mutations assist in studying the function of the 3' noncoding region of turnip yellow mosaic virus RNA

Author:

Tsai C H1,Dreher T W1

Affiliation:

1. Program in Genetics, Oregon State University, Corvallis 97331-7301.

Abstract

The 3' noncoding region of turnip yellow mosaic virus RNA includes an 82-nucleotide-long tRNA-like structure domain and a short upstream region that includes a potential pseudoknot overlapping the coat protein termination codon. Genomic RNAs with point mutations in the 3' noncoding region that result in poor replication in protoplasts and no systemic symptoms in planta were inoculated onto Chinese cabbage plants in an effort to obtain second-site suppressor mutations. Putative second-site suppressor mutations were identified by RNase protection and sequencing and were then introduced into genomic cDNA clones to permit their characterization. A C-57----U mutation in the tRNA-like structure was a strong suppressor of the C-55----A mutation which prevented both systemic infection and in vitro valylation of the viral RNA. Both of these phenotypes were rescued in the double mutant. An A-107----C mutation was a strong second-site suppressor of the U-96----G mutation, permitting the double mutant to establish systemic infection. The C-107 and G-96 mutations are located on opposite strands of one helix of a potential pseudoknot, and the results support a functional role for the pseudoknot structure. A mutation near the 5' end of the genome (G + 92----A), at position -3 relative to the initiation codon of the essential open reading frame 206, was found to be a general potentiator of viral replication, probably as a result of enhanced expression of open reading frame 206. The A + 92 mutation enhanced the replication of mutant TYMC-G96 in protoplasts but was not a sufficiently potent suppressor to permit systemic spread of the A + 92/G-96 double mutant in plants.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3