Prophage Sequences Defining Hot Spots of Genome Variation in Salmonella enterica Serovar Typhimurium Can Be Used To Discriminate between Field Isolates

Author:

Cooke Fiona J.12,Wain John1,Fookes Maria1,Ivens Alasdair1,Thomson Nicholas1,Brown Derek J.3,Threlfall E. John2,Gunn George4,Foster Geoffrey4,Dougan Gordon1

Affiliation:

1. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom

2. Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, United Kingdom

3. Scottish Salmonella Reference Laboratory, Stobhill Hospital, 133 Balornock Road, Glasgow G21 3UW, Scotland

4. SAC Veterinary Services and Animal Health Group, Drummondhill, Stratherrick Road, Inverness IV2 4JZ, Scotland

Abstract

ABSTRACT Sixty-one Salmonella enterica serovar Typhimurium isolates of animal and human origin, matched by phage type, antimicrobial resistance pattern, and place of isolation, were analyzed by microbiological and molecular techniques, including pulsed-field gel electrophoresis (PFGE) and plasmid profiling. PFGE identified 10 profiles that clustered by phage type and antibiotic resistance pattern with human and animal isolates distributed among different PFGE profiles. Genomic DNA was purified from 23 representative strains and hybridized to the composite Salmonella DNA microarray, and specific genomic regions that exhibited significant variation between isolates were identified. Bioinformatic analysis showed that variable regions of DNA were associated with prophage-like elements. Subsequently, simple multiplex PCR assays were designed on the basis of these variable regions that could be used to discriminate between S. enterica serovar Typhimurium isolates from the same geographical region. These multiplex PCR assays, based on prophage-like elements and Salmonella genomic island 1, provide a simple method for identifying new variants of S. enterica serovar Typhimurium in the field.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3