Receptor-Interacting Protein 2 Controls Pulmonary Host Defense to Escherichia coli Infection via the Regulation of Interleukin-17A

Author:

Balamayooran Theivanthiran1,Batra Sanjay1,Balamayooran Gayathriy1,Cai Shanshan1,Kobayashi Koichi S.2,Flavell Richard A.3,Jeyaseelan Samithamby14

Affiliation:

1. Laboratory of Lung Biology, Department of Pathobiological Sciences and Center for Experimental Infectious Disease Research, Louisiana State University (LSU), Baton Rouge, Louisiana 70803

2. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 05115

3. Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, Connecticut 06520

4. Section of Pulmonary and Critical Care Medicine, Department of Medicine, LSU Health Sciences Center, New Orleans, Louisiana 70112

Abstract

ABSTRACT Recognition of microbial patterns by host receptors is the first step in a multistep sequence leading to neutrophil-dependent host resistance. Although the role of membrane-bound sensors in bacterial recognition has been examined in detail, the importance of cytosolic sensors in the lungs is largely unexplored. In this context, there is a major lack of understanding related to the downstream signaling mediators, such as cells and/or molecules, during acute extracellular Gram-negative bacterial pneumonia. In order to determine the role of NOD-like receptors (NLRs), we used an experimental Escherichia coli infection model using mice deficient in the gene coding for the NLR adaptor, receptor-interacting protein 2 (RIP2). RIP2 −/− mice with E. coli infection displayed higher bacterial burden and reduced neutrophil recruitment and tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), macrophage inflammatory protein 2 (MIP-2), and CXCL5/LIX expression, along with attenuated histopathological changes in the lungs. Decreased IL-17A levels were observed, along with lower numbers of IL-17A-producing T cells, in RIP2 −/− mice after infection. RIP2 −/− mice also show reduced IL-6 and IL-23 levels in the lungs, along with decreased activation of STAT3 after infection. Furthermore, activation of NF-κB and mitogen-activated protein kinases (MAPKs) and expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in the lungs of infected RIP2 −/− mice were attenuated following infection. Although neutrophil mobilization to the blood was impaired in RIP2 −/− mice following infection, the expression of CD62P, CD11a/18, CD11b, and CXCR2 on blood and lung neutrophils was not altered between infected wild-type (WT) and RIP2 −/− mice. Thus, RIP2 contributes to neutrophil-dependent host defense against an extracellular Gram-negative pathogen via (i) IL-17A regulation and (ii) neutrophil mobilization to the blood.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3