Mutational inactivation of the Saccharomyces cerevisiae RAD4 gene in Escherichia coli

Author:

Fleer R1,Siede W1,Friedberg E C1

Affiliation:

1. Department of Pathology, Stanford University School of Medicine, California 94305.

Abstract

The RAD4 gene of Saccharomyces cerevisiae is required for the incision of damaged DNA during nucleotide excision repair. When plasmids containing the wild-type gene were transformed into various Escherichia coli strains, transformation frequencies were drastically reduced. Most plasmids recovered from transformants showed deletions or rearrangements. A minority of plasmids recovered from E. coli HB101 showed no evidence of deletion or rearrangement, but when they were transformed into S. cerevisiae on centromeric vectors, little or no complementation of the UV sensitivity of rad4 mutants was observed. Deliberate insertional mutagenesis of the wild-type RAD4 allele before transformation of E. coli restored transformation to normal levels. Plasmids recovered from these transformants contained an inactive rad4 allele; however, removal of the inserted DNA fragment restored normal RAD4 function. These experiments suggest that expression of the RAD4 gene is lethal to E. coli and show that lethality can be prevented by inactivation of the gene before transformation. Stationary-phase cultures of some strains of E. coli transformed with plasmids containing an inactivated RAD4 gene showed a pronounced delay in the resumption of exponential growth, suggesting that the mutant (and, by inference, possibly wild-type) Rad4 protein interferes with normal growth control in E. coli. The rad4-2, rad4-3, and rad4-4 chromosomal alleles were leaky relative to a rad4 disruption mutant. In addition, overexpression of plasmid-borne mutant rad4 alleles resulted in partial complementation of rad4 strains. These observations suggest that the Rad4 protein is relatively insensitive to mutational inactivation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference30 articles.

1. A rapid alkaline extraction procedure for screening recombinant plasmid DNA;Birnboim H. C.;Nucleic Acids Res.,1979

2. An Escherichia coli recBC sbcC recF host permits the deletion-resistant propagation of plasmid clones containing the 5'-terminal palindrome of minute virus of mice;Boissy R.;Gene,1985

3. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells;Dagert M.;Gene,1979

4. The RAD4 gene of Saccharomyces cerevisiae: molecular cloning and partial characterization of a gene that is inactivated in Escherichia coli;Fleer R.;Mol. Cell. Biol.,1987

5. Nucleotide excision repair of DNA in eukaryotes: comparison between human cells and yeast;Friedberg E. C.;Cancer Surv.,1985

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3