Involvement of a low-molecular-weight substance in in vitro activation of the molybdoenzyme respiratory nitrate reductase from a chlB mutant of Escherichia coli

Author:

Boxer D H1,Low D C1,Pommier J1,Giordano G1

Affiliation:

1. Department of Biochemistry, University of Dundee, Scotland.

Abstract

The soluble subcellular fraction of a chlB mutant contains an inactive precursor form of the molybdoenzyme nitrate reductase, which can be activated by the addition to the soluble fraction of protein FA, which is thought to be the active product of the chlB locus. Dialysis or desalting of the chlB soluble fraction leads to the loss of nitrate reductase activation, indicating that some low-molecular-weight material is required for the activation. The protein FA-dependent activation of nitrate reductase can be restored to the desalted chlB soluble fraction by the addition of a clarified extract obtained after heating the chlB soluble fraction at 100 degrees C for 8 min. The heat-stable substance present in this preparation has a molecular weight of approximately 1,000. This substance is distinct from the active molybdenum cofactor since its activity is unimpaired in heat-treated extracts prepared from the organism grown in the presence of tungstate, which leads to loss of cofactor activity. Mutations at the chlA or chlE locus, which are required for molybdenum cofactor biosynthesis, similarly do not affect the activity of the heat-treated extract in the in vitro activation process. Moreover, the active material can be separated from the molybdenum cofactor activity by gel filtration. None of the other known pleiotropic chlorate resistance loci (chlD, chlG) are required for the expression of its activity. Magnesium ATP appears to have a role in the formation of the active substance. We conclude that a low-molecular-weight substance, distinct from the active molybdenum cofactor, is required to bestow activity on the molybdoenzyme nitrate reductase during its biosynthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3