Affiliation:
1. Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53706
Abstract
Cells of
Escherichia coli
ML30 in a mineral salts medium were exposed to dichlorodifluoromethane (f-12), cyclopropane, halothane, or Ethrane at concentrations of 1.25, 0.2, 0.04, and 0.008× saturation for times up to 1,200 min, and at temperatures in the range of 2 to 37 C. When any of these anesthetics were applied for 300 min at 1.25× saturation, a substantial decrease in number of survivors occurred. Halothane was most bactericidal, cyclopropane and Ethrane were moderately bactericidal, and f-12 was least bactericidal. At saturation values of less than 1.0, none of the four anesthetics had an appreciable effect on viability of
E. coli
. Greatest increases in cell permeability occurred when anesthetics were used at saturation values of 1.25, and permeability changes generally decreased as the concentrations of the chemicals were reduced. In many instances, anesthetics in the vapor state caused significant increases in cell permeability but little or no loss of viability. This indicated that a close relationship did not exist between loss of viability and increased permeability. All four anesthetics caused
E. coli
to lose substantial and similar amounts of compounds absorbing at 260 nm. Release of compounds absorbing at 260 nm generally increased as the saturation value of a given chemical was increased. Halothane, Ethrane, and cyclopropane but not f-12 caused lysis of
E. coli
ML30. Considering all results,
E. coli
ML30 was damaged more by halothane or cyclopropane than by f-12 or Ethrane. When f-12 was applied at a saturation value of 1.25, the bactericidal effect on
E. coli
was much greater at 37 or 22 C than at 12 or 2 C.
Publisher
American Society for Microbiology
Subject
General Pharmacology, Toxicology and Pharmaceutics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine