Vaccinia virus induces ribonucleotide reductase in primate cells

Author:

Slabaugh M B,Johnson T L,Mathews C K

Abstract

Infection of monkey kidney (BSC-40) cells with vaccinia virus strain WR resulted in a marked increase in ribonucleoside diphosphate reductase (EC 1.17.4.1) activity as measured by CDP reduction in cell-free extracts. After a synchronous infection, increased activity was detected at 2 h, peaked at 4 to 5 h, and then declined between 6 and 8 h to the endogenous cellular level. The induction, detectable at 0.5 PFU/cell, correlated strongly with multiplicity of infection to 10 PFU/cell and continued to increase to 50 PFU/cell. It paralleled the previously described induction of viral DNA polymerase and thymidine kinase, suggesting that the reductase may also be a product of early transcription of the viral genome. The inhibition of DNA synthesis throughout infection resulted in prolonged accumulation of reductase activity and delayed and incomplete down-regulation at 8 h, suggesting that repression involves late functions. Rescue of fluorodeoxyuridine-inhibited DNA synthesis with exogenous thymidine restored the normal pattern. Preferential association of the induced reductase with the cytoplasmic sites of vaccinia virus DNA replication (virosomes) was not detected. The induced enzyme is similar in several respects to other eucaryotic ribonucleotide reductases, but is distinct from host cell reductase in response to certain modulators of reductase activity (M. B. Slabaugh and Christopher K. Mathews, J. Virol. 52:501-506, 1984). Full activity required an activator, exogenous reducing equivalents, and iron. Hydroxyurea, EDTA, dATP, and dTTP inhibited CDP reduction, setting this reductase apart from T4 reductase, which is not inhibited by dATP, and from herpesvirus reductase, which requires no activation and is insensitive to deoxyribonucleoside triphosphate inhibition.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3