Author:
Slabaugh M B,Johnson T L,Mathews C K
Abstract
Infection of monkey kidney (BSC-40) cells with vaccinia virus strain WR resulted in a marked increase in ribonucleoside diphosphate reductase (EC 1.17.4.1) activity as measured by CDP reduction in cell-free extracts. After a synchronous infection, increased activity was detected at 2 h, peaked at 4 to 5 h, and then declined between 6 and 8 h to the endogenous cellular level. The induction, detectable at 0.5 PFU/cell, correlated strongly with multiplicity of infection to 10 PFU/cell and continued to increase to 50 PFU/cell. It paralleled the previously described induction of viral DNA polymerase and thymidine kinase, suggesting that the reductase may also be a product of early transcription of the viral genome. The inhibition of DNA synthesis throughout infection resulted in prolonged accumulation of reductase activity and delayed and incomplete down-regulation at 8 h, suggesting that repression involves late functions. Rescue of fluorodeoxyuridine-inhibited DNA synthesis with exogenous thymidine restored the normal pattern. Preferential association of the induced reductase with the cytoplasmic sites of vaccinia virus DNA replication (virosomes) was not detected. The induced enzyme is similar in several respects to other eucaryotic ribonucleotide reductases, but is distinct from host cell reductase in response to certain modulators of reductase activity (M. B. Slabaugh and Christopher K. Mathews, J. Virol. 52:501-506, 1984). Full activity required an activator, exogenous reducing equivalents, and iron. Hydroxyurea, EDTA, dATP, and dTTP inhibited CDP reduction, setting this reductase apart from T4 reductase, which is not inhibited by dATP, and from herpesvirus reductase, which requires no activation and is insensitive to deoxyribonucleoside triphosphate inhibition.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献