Abstract
Growth of Enterobacter cloacae on K+ citrate under aerated conditions (no detectable oxygen tension in the medium even though it was aerated) was slower (mean generation time, 130 min) than under aerobic conditions (mean generation time, 72 min), but with a faster utilization of citrate, resulting in a molar growth yield of 10.6 g (dry weight) of cells per mol of citrate utilized versus 40 g (dry weight) of cells per mol of citrate utilized for aerobic growth. The rapid utilization of citrate under aerated conditions was apparently due to the induction of citrate lyase and was supported by the finding that cells excreted acetate and a small amount of oxalacetate under aerated conditions, but not under aerobic conditions when the cells were devoid of citrate lyase activity. The activity of oxalacetate decarboxylase in aerated cells was slightly lower than in aerobic cells, indicating that little of the oxalacetate produced by the citrate lyase was metabolized by the decarboxylase. Oxalacetate was probably metabolized by malate dehydrogenase, previously shown to be present in anaerobic and aerobic cells. Thus, about 70% of the citrate was cleaved by the citrate lyase, resulting in little or no production of energy for growth. The remaining citrate was metabolized via the citric acid cycle under aerated conditions, since the cells contained alpha-ketoglutarate dehydrogenase at the same level as in aerobically grown cells. The presence of the other enzymes of the cycle was shown in earlier studies.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献