Hepatitis C Virus Core Protein Blocks Interferon Signaling by Interaction with the STAT1 SH2 Domain

Author:

Lin Wenyu1,Kim Sun Suk1,Yeung Elaine1,Kamegaya Yoshitaka1,Blackard Jason T.1,Kim Kyung Ah1,Holtzman Michael J.2,Chung Raymond T.1

Affiliation:

1. Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114

2. Department of Medicine and Cell Biology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

ABSTRACT Emerging data have indicated that hepatitis C virus (HCV) subverts the host antiviral response to ensure its persistence. We previously demonstrated that HCV protein expression suppresses type I interferon (IFN) signaling by leading to the reduction of phosphorylated STAT1 (P-STAT1). We also demonstrated that HCV core protein directly bound to STAT1. However, the detailed mechanisms by which HCV core protein impacts IFN signaling components have not been fully clarified. In this report, we show that the STAT1 interaction domain resides in the N-terminal portion of HCV core (amino acids [aa] 1 to 23). This domain is also required to produce P-STAT1 reduction and inhibit IFN signaling transduction. Conversely, the C-terminal region of STAT1, specifically the SH2 domain (aa 577 to 684), is required for the interaction of HCV core with STAT1. The STAT1 SH2 domain is critical for STAT1 hetero- or homodimerization. We propose a model by which the binding of HCV core to STAT1 results in decreased P-STAT, blocked STAT1 heterodimerization to STAT2, and, therefore, reduced IFN-stimulated gene factor-3 binding to DNA and disrupted IFN-stimulated gene transcription.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3