Coordinate Cytokine Gene Expression In Vivo following Induction of Tuberculous Pleurisy in Guinea Pigs

Author:

Allen Shannon Sedberry1,McMurray David N.1

Affiliation:

1. Department of Medical Microbiology & Immunology, Texas A&M University System Health Science Center, College Station, Texas 77843

Abstract

ABSTRACT Tuberculous pleurisy is a severe inflammatory response induced by Mycobacterium tuberculosis organisms that have escaped from lung granulomata into the pleural space during pulmonary infection. We have used the guinea pig model of tuberculous pleurisy to examine several aspects of the immune response to this antigen-specific inflammatory event. Pleurisy was induced by injection of heat-killed M. tuberculosis H37Rv directly into the pleural space of guinea pigs previously vaccinated with M. bovis BCG. Four animals were euthanized each day over a period of 9 days. Fluid in the pleural cavity was analyzed for transforming growth factor β1 (TGF-β1) and total interferon (IFN) protein levels. In addition, RNA was obtained from pleural cells and examined for TGF-β1, tumor necrosis factor alpha (TNF-α), IFN-γ, and interleukin-8 (IL-8) expression by real-time PCR. Finally, pleural cells were examined for the ability to proliferate in response to concanavalin A and purified protein derivative (PPD) in vitro. In the pleural fluid, TGF-β1 protein concentrations increased over the course of the inflammatory response while IFN protein levels were not significantly altered. Expression of TGF-β1 mRNA peaked on days 3 and 4, and IFN-γ mRNA expression peaked on day 3 and then returned to background levels. TNF-α mRNA expression was highest on days 2 to 4, and IL-8 mRNA levels remained elevated between days 2 and 5, peaking on day 3 before returning to background levels. PPD-induced proliferative responses were evident by day 3 and remained present throughout the study. Analysis of cytokine expression during tuberculous pleurisy may lead to a better understanding of the self-healing nature of this manifestation of tuberculosis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3