Affiliation:
1. Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
Abstract
ABSTRACT
Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from
Clostridium difficile
(CDRPI), mannose-6-phosphate isomerase from
Bacillus subtilis
(BSMPI), and glucose-6-phosphate isomerase from
Pyrococcus furiosus
(PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a
d
-ribose isomerase, an
l
-ribose isomerase, and an
l
-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献