Widespread Distribution and Identification of Eight Novel Microcystins in Antarctic Cyanobacterial Mats

Author:

Wood Susanna A.12,Mountfort Doug1,Selwood Andrew I.1,Holland Patrick T.1,Puddick Jonathan2,Cary S. Craig23

Affiliation:

1. Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand

2. Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand

3. College of Marine and Earth Studies, University of Delaware, Lewes, Delaware 19958

Abstract

ABSTRACT The microcystin (MC) content and cyanobacterial community structure of Antarctic microbial mat samples collected from 40 ponds, lakes, and hydroterrestrial environments were investigated. Samples were collected from Bratina Island and four of the Dry Valleys, Wright, Victoria, Miers, and Marshall. Enzyme-linked immunosorbent assays (ELISAs), liquid chromatography-mass spectrometry (LC-MS), and protein phosphatase 2A (PP-2A) inhibition assays resulted in the identification of low levels (1 to 16 mg/kg [dry weight]) of MCs in all samples. A plot of indicative potencies of MCs (PP-2A inhibition assay/ELISA ratio) versus total MCs (ELISA) showed a general decrease in potency, as total MC levels increased, and a clustering of values from discrete geographic locations. LC-tandem MS analysis on selected samples identified eight novel MC congeners. The low-energy collisional activation spectra were consistent with variants of [ d -Asp 3 ] MC-RR and [ d -Asp 3 ] MC-LR containing glycine [Gly 1 ] rather than alanine and combinations of homoarginine [hAr 2 ] or acetyldemethyl 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid (acetyldemethyl ADDA) [ADMAdda 5 ] substitutions. Nostoc sp. was identified as a MC producer using PCR amplification of a region of the 16S rRNA gene and the aminotransferase domain of the mcyE gene. Automated ribosomal intergenic spacer analysis (ARISA) was undertaken to enable a comparison of cyanobacterial mat community structure from distant geographical locations. Two-dimensional multidimensional scaling ordination analysis of the ARISA data showed that in general, samples from the same geographic location tended to cluster together. ARISA also enabled the putative identification of the MC-producing Nostoc sp. from multiple samples.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3