Characteristics of Gloeophyllum trabeum Alcohol Oxidase, an Extracellular Source of H 2 O 2 in Brown Rot Decay of Wood

Author:

Daniel Geoffrey1,Volc Jindřich2,Filonova Lada1,Plíhal Ondřej2,Kubátová Elena2,Halada Petr2

Affiliation:

1. Department of Forest Products, Swedish University of Agricultural Sciences, P.O. Box 7008, SE-750 07 Uppsala, Sweden

2. Institute of Microbiology v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic

Abstract

ABSTRACT A novel alcohol oxidase (AOX) has been purified from mycelial pellets of the wood-degrading basidiomycete Gloeophyllum trabeum and characterized as a homooctameric nonglycosylated protein with native and subunit molecular masses of 628 and 72.4 kDa, containing noncovalently bonded flavin adenine dinucleotide. The isolated AOX cDNA contained an open reading frame of 1,953 bp translating into a polypeptide of 651 amino acids displaying 51 to 53% identity with other published fungal AOX amino acid sequences. The enzyme catalyzed the oxidation of short-chain primary aliphatic alcohols with a preference for methanol ( K m = 2.3 mM, k cat = 15.6 s −1 ). Using polyclonal antibodies and immunofluorescence staining, AOX was localized on liquid culture hyphae and extracellular slime in sections from degraded wood and on cotton fibers. Transmission electron microscopy immunogold labeling localized the enzyme in the hyphal periplasmic space and wall and on extracellular tripartite membranes and slime, while there was no labeling of hyphal peroxisomes. AOX was further shown to be associated with membranous or slime structures secreted by hyphae in wood fiber lumina and within the secondary cell walls of degraded wood fibers. The differences in AOX targeting compared to the known yeast peroxisomal localization were traced to a unique C-terminal sequence of the G. trabeum oxidase, which is apparently responsible for the protein's different translocation. The extracellular distribution and the enzyme's abundance and preference for methanol, potentially available from the demethylation of lignin, all point to a possible role for AOX as a major source of H 2 O 2 , a component of Fenton's reagent implicated in the generally accepted mechanisms for brown rot through the production of highly destructive hydroxyl radicals.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3