Isolation of a Membrane Protein Complex for Type VII Secretion in Staphylococcus aureus

Author:

Aly Khaled A.1,Anderson Mark1,Ohr Ryan Jay1,Missiakas Dominique1

Affiliation:

1. Department of Microbiology, University of Chicago, Chicago, Illinois, USA

Abstract

ABSTRACT The ESAT6-like secretion system (ESS) of Staphylococcus aureus promotes effector protein transport across the bacterial envelope. Genes in the ESS cluster are required for S. aureus establishment of persistent abscess lesions and the modulation of immune responses during bloodstream infections. However, the biochemical functions of most of the ESS gene products, specifically the identity of secretion machine components, are unknown. Earlier work demonstrated that deletion of essB , which encodes a membrane protein, abolishes S. aureus ESS secretion. Loss-of-function mutations truncating the essB gene product cause dominant-negative phenotypes on ESS secretion, suggesting that EssB is a central component of the secretion machinery. To test this prediction, we purified native and affinity-tagged EssB from staphylococcal membranes via dodecyl-maltoside extraction, identifying a complex assembled from five proteins, EsaA, EssA, EssB, EssD, and EsxA. All five proteins are essential for secretion, as knockout mutations in the corresponding genes abolish ESS transport. Biochemical and bacterial two-hybrid analyses revealed a direct interaction between EssB and EsaA that, by engaging a mobile machine component, EsxA, may also recruit EssA and EssD. IMPORTANCE Type VII secretion systems support the lifestyle of Gram-positive bacteria, including important human pathogens such as Bacillus anthracis , Mycobacterium tuberculosis , and Staphylococcus aureus . Genes encoding SpoIIIE-FtsK-like ATPases and WXG100-secreted products are conserved features of type VII secretion pathways; however, most of the genes in T7SS clusters are not conserved between different bacterial species. Here, we isolate a complex of proteins from the membranes of S. aureus that appears to represent the core secretion machinery, designated ESS. These results suggest that three membrane proteins, EsaA, EssB, and EssA, form a secretion complex that associates with EssC, the SpoIIIE-FtsK-like ATPase, and with EsxA, a mobile machine component and member of the WXG100 protein family.

Funder

National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

American Heart Association

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3