The Main Virulence Determinant of Yersinia entomophaga MH96 Is a Broad-Host-Range Toxin Complex Active against Insects

Author:

Hurst Mark R. H.1,Jones Sandra A.1,Binglin Tan1,Harper Lincoln A.1,Jackson Trevor A.1,Glare Travis R.2

Affiliation:

1. BioControl and BioSecurity, AgResearch, Lincoln Research Centre, Private Bag 4749, Christchurch 8140, Canterbury, New Zealand

2. Bio-Protection Research Centre, P.O. Box 84, Lincoln University, Lincoln 7647, Canterbury, New Zealand

Abstract

ABSTRACT Through transposon mutagenesis and DNA sequence analysis, the main disease determinant of the entomopathogenic bacterium Yersinia entomophaga MH96 was localized to an ∼32-kb pathogenicity island (PAI) designated PAI Ye96 . Residing within PAI Ye96 are seven open reading frames that encode an insecticidal toxin complex (TC), comprising not only the readily recognized toxin complex A (TCA), TCB, and TCC components but also two chitinase proteins that form a composite TC molecule. The central TC gene-associated region (∼19 kb) of PAI Ye96 was deleted from the Y. entomophaga MH96 genome, and a subsequent bioassay of the ΔTC derivative toward Costelytra zealandica larvae showed it to be innocuous. Virulence of the ΔTC mutant strain could be restored by the introduction of a clone containing the entire PAI Ye96 TC gene region. As much as 0.5 mg of the TC is released per 100 ml of Luria-Bertani broth at 25°C, while at 30 or 37°C, no TC could be detected in the culture supernatant. Filter-sterilized culture supernatants derived from Y. entomophaga MH96, but not from the ΔTC strain grown at temperatures of 25°C or less, were able to cause mortality. The 50% lethal doses (LD 50 s) of the TC toward diamondback moth Plutella xylostella and C. zealandica larvae were defined as 30 ng and 50 ng, respectively, at 5 days after ingestion. Histological analysis of the effect of the TC toward P. xylostella larva showed that within 48 h after ingestion of the TC, there was a general dissolution of the larval midgut.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3