Functional and Phenotypic Characteristics of Alternative Activation Induced in Human Monocytes by Interleukin-4 or the Parasitic Nematode Brugia malayi

Author:

Semnani Roshanak Tolouei1,Mahapatra Lily1,Moore Vanessa1,Sanprasert Vivornpun1,Nutman Thomas B.1

Affiliation:

1. Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland

Abstract

ABSTRACT Human monocytes from patients with patent filarial infections are studded with filarial antigen and express markers associated with alternative activation of macrophages (MΦ). To explore the role of filaria-derived parasite antigen in differentiation of human monocytes, cells were exposed to microfilariae (mf) of Brugia malayi , and their phenotypic and functional characteristics were compared with those of monocytes exposed to factors known to generate either alternatively (interleukin-4 [IL-4]) or classically (macrophage colony-stimulating factor [MCSF]) activated MΦ. IL-4 upregulated mRNA expression of CCL13, CCL15, CCL17, CCL18, CCL22, CLEC10A, MRC1, CADH1, CD274, and CD273 associated with alternative activation of MΦ but not arginase 1. IL-4-cultured monocytes had a diminished ability to promote proliferation of both CD4 + and CD8 + T cells compared to that of unexposed monocytes. Similar to results with IL-4, exposure of monocytes to live mf induced upregulation of CCL15, CCL17, CCL18, CCL22, CD274, and CD273 and downregulation of Toll-like receptor 3 (TLR3), TLR5, and TLR7. In contrast to results with MCSF-cultured monocytes, exposure of monocytes to mf resulted in significant inhibition of the phagocytic ability of these cells to the same degree as that seen with IL-4. Our data suggest that short exposure of human monocytes to IL-4 induces a phenotypic characteristic of alternative activation and that secreted filarial products skew monocytes similarly.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3