Cloning of bacterial genes specifying degradation of 4-chlorobiphenyl from Pseudomonas putida OU83

Author:

Khan A1,Walia S1

Affiliation:

1. Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401.

Abstract

Genes capable of 4-chlorobiphenyl (4-CBP) degradation were cloned from 4-CBP-degrading Pseudomonas putida OU83 by using a genomic library which was constructed in the broad-host-range cosmid vector pCP13. P. putida AC812 containing chimeric cosmid-expressing enzymes involved in the 4-CBP degradation pathway were identified by detecting 3-phenylcatechol dioxygenase activity (3-PDA). Chimeric cosmid clones pOH83, pOH84, pOH85, pOH87, and pOH88 positive for 3-PDA grew in synthetic basal medium containing 4-CBP (5 mM) as a carbon source. Restriction digestion analysis of recombinant cosmids showed DNA inserts ranging from 6 to 30 kilobase pairs. Southern hybridization data revealed that the cloned DNA inserts originated from strain OU83. Gas chromatography-mass spectrometry analysis of the metabolites of P. putida AC812(pOH88) incubated with 4-CBP and 4'-chloro-3-phenylcatechol showed the formation of 4-chlorobenzoic acid and benzoic acid. These results demonstrate that the cloned DNA fragments contain genes encoding for chlorobiphenyl dioxygenase (cbpA), dihydrodiol dehydrogenase (cbpB), 4'-chloro-3-phenylcatechol dioxygenase (cbpC), a meta-cleavage compound (a chloro derivative of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate) hydrolase (cbpD), and a new dechlorinating activity (dcpE). The location of the cbpC gene specifying 3-PDA was determined by subcloning an EcoRI DNA fragment (9.8 kilobase pairs) of pOH88 in plasmid vector pUC19. The cloned gene encoding 3-PDA was expressed in Escherichia coli HB101 and had substrate specificity only for 3-phenylcatechol and 4'-chloro-3-phenylcatechol.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3