Dermatophyte-hormone relationships: characterization of progesterone-binding specificity and growth inhibition in the genera Trichophyton and Microsporum

Author:

Clemons K V1,Schär G1,Stover E P1,Feldman D1,Stevens D A1

Affiliation:

1. Department of Medicine, Stanford University School of Medicine, California 94305.

Abstract

We reported previously that Trichophyton mentagrophytes contains a cytoplasmic macromolecule which specifically binds progesterone. Progesterone is also an effective inhibitor of growth of the fungus. We report here studies which characterize more fully the specific binding properties and the functional responses of T. mentagrophytes and taxonomically related fungi to a series of mammalian steroid hormones. Scatchard analysis of [3H]progesterone binding in both the + and - mating types of Arthroderma benhamiae and in Microsporum canis revealed a single class of binding sites with approximately the same affinity as that in T. mentagrophytes (Kd, 1 X 10(-7) to 2 X 10(-7) M). Trichophyton rubrum had a protein with a higher binding affinity (Kd, 1.6 X 10(-8) M). Characterization of the [3H]progesterone-binding sites in T. mentagrophytes showed the binder to be a protein which was destroyed by trypsin and heating to 56 degrees C. Previous examination of the steroid-binding specificity in T. mentagrophytes had demonstrated that deoxycorticosterone (DOC) and dihydrotestosterone (DHT) were effective competitors for [3H]progesterone binding. Expansion of this study to include other competitors revealed that R5020 (a synthetic progestin), androstenedione, and dehydroepiandosterone possessed relative binding affinities which were 20, 11, and 9% of that of progesterone, respectively. Other ligands tested were less effective. Competition studies for the binder in M. canis resulted in similar findings: DOC and DHT were effective competitors for [3H]progesterone binding. The growth of A. benhamiae + and -, M. canis, and T. rubrum were all inhibited by progesterone in a dose-responsive manner, with 50% inhibition achieved at concentrations of 9.8 x 10(-6), 1.2 x 10(-5), 1.5 x 10(-5), and 2.7 x 10(-6) M. respectively,.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference19 articles.

1. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding;Bradford M. M.;Anal. Biochem.,1976

2. Effect of steroids on dermatophytes;Capek A.;Folia Microbiol.,1971

3. Human sex hormones stimulate the growth and the maturation of Coccidioides immitis;Drutz D.;Infect. Immun.,1981

4. An estrogen-binding protein and endogenous ligand in Saccharomyces cerevisiae: possible hormone receptor system;Feidman D.;Science,1982

5. Obfuscation of the activity of antifungal antibiotics by culture media;Hoeprich P. D.;J. Infect. Dis.,1972

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3