Murine Neonates Are Highly Resistant to Yersinia enterocolitica following Orogastric Exposure

Author:

Echeverry Andrea1,Schesser Kurt1,Adkins Becky1

Affiliation:

1. Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida

Abstract

ABSTRACT Neonates are considered highly susceptible to gastrointestinal infections. This susceptibility has been attributed partially to immaturity in immune cell function. To study this phenomenon, we have developed a model system with murine neonates, using the natural orogastric route of transmission for the enteropathogen Yersinia enterocolitica . The susceptibilities of 7-day-old and adult mice to orogastric Y. enterocolitica infection were assessed in 50% lethal dose experiments. Remarkably, neonatal mice of either the BALB/c or C57BL/6 mouse strain showed markedly enhanced survival after infection compared to adult mice. The resistance of neonates was not due to failure of the bacteria to colonize neonatal tissues; Y. enterocolitica was readily detectable in the intestine and mesenteric lymph nodes (MLN) for at least 1 week after infection. In adult mice, Y. enterocolitica rapidly disseminated to the spleen and liver. In striking contrast, bacterial invasion of the spleen and liver in neonates was limited. Using flow cytometry and histology, we found substantial increases in the percentages of neutrophils and macrophages in the neonatal MLN, while influx of these cells into the adult MLN was limited. Similar results were obtained using two different high-virulence Y. enterocolitica strains. Importantly, depletion of neutrophils with a specific antibody led to increased translocation of the bacteria to the spleens and livers of neonates. Together, these experiments support the hypothesis that the neonatal intestinal immune system can rapidly mobilize innate phagocytes and thereby confine the bacterial infection to the gut, resulting in a high level of resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3