Production of Stabilized Virulence Factor-Negative Variants by Group A Streptococci during Stationary Phase

Author:

Leonard B. A. B.1,Woischnik M.1,Podbielski A.1

Affiliation:

1. Department of Medical Microbiology and Hygiene, University of Ulm Clinic, 89081 Ulm, Germany

Abstract

ABSTRACT Many of the virulence factors associated with fulminant group A streptococci (GAS) infection are expressed under in vitro exponential growth conditions. However, the survival of GAS in tissue and intracellularly, as well as colonization of asymptomatic carriers, has been reported for GAS. The bacteria associated with these niches may encounter high-density, low-nutrient-flowthrough conditions that may more closely mimic in vitro stationary-phase conditions than exponential growth. Therefore, the behavior of GAS in stationary-phase culture was examined. We observed that after 24 h in stationary phase, GAS serotypes M49 and M2 developed a unstable colony dimorphism of typical large and atypical small colonies. Between days 4 and 5, we isolated stabilized atypical small colonies which remained stable for up to nine passages (approximately 200 generations) on fresh medium before fully reverting to the large-colony phenotype. Upon analysis, the small colonies showed no difference in cell number per colony, growth rate, survival in prolonged stationary-phase culture, or antibiotic sensitivity. However, the small colonies showed decreased transcription of hyaluronic acid capsule, the global positive virulence factor regulator gene mga , the mga -regulated emm mRNA (M-protein structural gene), and speB (cysteine protease). Accordingly, the small colonies were completely sensitive in a traditional phagocytosis assay. The production of virulence factors and phagocytosis resistance of the small-colony isolates was recovered when, after several passages on fresh medium, the colony morphology began to revert.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference59 articles.

1. Simple and rapid method for isolating large plasmid DNA from lactic streptococci

2. Ausubel F. M. Brent R. Kingston R. E. Moore D. D. Seidman J. G. Smith J. A. Struhl K. Current protocols in molecular biology. 1990 Green Publishing Associates and Wiley-Interscience New York N.Y

3. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins;Berge A.;J. Biol. Chem.,1995

4. Reduced Virulence of Group A Streptococcal Tn 916 Mutants That Do Not Produce Streptolysin S

5. New method for quantitative determination of uronic acids;Blumenkrantz N.;Anal. Biochem.,1973

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3