Role of Rta in the Translation of Bicistronic BZLF1 of Epstein-Barr Virus

Author:

Chang Pey-Jium12,Chang Yu-Sun2,Liu Shih-Tung2

Affiliation:

1. Graduate Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taipei 112,1 and

2. Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Kwei-Shan, Taoyuan 333,2 Taiwan

Abstract

ABSTRACT The BZLF1 gene of Epstein-Barr virus (EBV), which encodes a transcription factor, Zta, is transcribed into monocistronic and bicistronic mRNAs from two different promoters during the immediate-early stage of the EBV lytic cycle. It is generally accepted that the Zta protein translated from the monocistronic mRNA profoundly influences the activation of the EBV lytic cycle. In this study, we constructed a plasmid, pCMV-RZLUC, which can transcribe a bicistronic mRNA consisting of BRLF1 and a BZLF1- luc fusion gene under latent conditions. P3HR1 cells transfected with this plasmid produce a luciferase activity which is approximately 17-fold higher than the activity exhibited by pRZLUC, a plasmid incapable of transcribing the bicistronic mRNA. Genetic analyses indicated that mutations in BRLF1 not only can decrease the translation of the fusion gene from the bicistronic mRNA but can also be complemented by a functional BRLF1 gene in cis . This observation implies that the product of BRLF1, Rta, is involved in the translation of the downstream gene. Results presented herein also demonstrate that these mutations cannot be complemented in trans with a plasmid overexpressing Rta, suggesting that the amount of Rta in the vicinity of the intercistronic region may be crucial for the translation. Furthermore, our results correspond to those of previous investigations indicating that the Zta protein can be translated from the bicistronic mRNA and that, similar to the translation of bicistronic ZLUC, mutations in BRLF1 also hinder the translation of Zta from the BRLF1-BZLF1 bicistronic mRNA. Translation of Zta from the bicistronic mRNA may play an essential role in the activation of the EBV lytic cycle.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3