The Major Structural Protein of African Swine Fever Virus, p73, Is Packaged into Large Structures, Indicative of Viral Capsid or Matrix Precursors, on the Endoplasmic Reticulum

Author:

Cobbold Christian1,Wileman Thomas1

Affiliation:

1. Division of Immunology, Institute for Animal Health, Pirbright Laboratory, Surrey, England

Abstract

ABSTRACT African swine fever virus (ASFV) is a large enveloped DNA virus that shares the striking icosahedral symmetry of iridoviruses. To understand the mechanism of assembly of ASFV, we have been studying the biosynthesis and subcellular distribution of p73, the major structural protein of ASFV. Sucrose density sedimentation of lysates prepared from infected cells showed that newly synthesized p73 was incorporated into a complex with a size of 150 to 250 kDa. p73 synthesized by in vitro translation migrated at 70 kDa, suggesting that cellular and/or viral proteins are required for the formation of the 150- to 250-kDa complex. During a 2-h chase, approximately 50% of the newly synthesized pool of p73 bound to the endoplasmic reticulum (ER). During this period, the membrane-bound pool of p73, but not the cytosolic pool, formed large complexes of approximately 50,000 kDa. The complexes were formed via assembly intermediates, and the entire membrane-associated pool of p73 was incorporated into the 50,000-kDa complex within 2 h. The 50,000-kDa complexes containing p73 were also detected in virions secreted from cells. Immunoprecipitation of sucrose gradients with sera taken from hyperimmune pigs suggested that p73 was the major component of the 50,000-kDa complex. It is possible, therefore, that the complex contains between 600 and 700 copies of p73. The kinetics of complex formation and envelopment of p73 were similar, and complex formation and envelopment were both reversibly inhibited by cycloheximide, suggesting a functional link between complex assembly and ASFV envelopment. A protease protection assay detected 50,000-kDa complexes on the inside and outside of the membranes forming the viral envelope. The identification of a complex containing p73 beneath the envelope of ASFV suggests that p73 may be a component of the inner core shell or matrix of ASFV. The outer pool may represent p73 within the outer capsid layer of the virus. In summary, the data suggest that the assembly of the inner core matrix and outer capsid of ASFV takes place on the ER membrane during envelopment and that these structures are not preassembled in the cytosol.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3