Abstract
Bacillus amyloliquefaciens BaM-2 produces large amounts of extracellular enzymes, and the synthesis of these proteins appears to be dependent upon abnormal ribonucleic acid metabolism. A polynucleotide phosphorylase (nucleoside diphosphate:polynucleotide nucleotidyl transferase) was identified, purified, and characterized from this strain. The purification scheme involved cell disruption, phase partitioning, differential (NH4)2SO4 solubilities, agarose gel filtration, and diethylaminoethyl-Sephadex chromatography. The purified enzyme demonstrated the reactions characteristic of polynucleotide phosphorylase: polymerization, phosphorolysis, and inorganic phosphate exchange with the beta-phosphate of a nucleotide diphosphate. The enzyme was apparently primer independent and required a divalent cation. The reactions for the synthesis of the homopolyribonucleotides, (A)n and (G)n, were optimized with respect to pH and divalent cation concentration. The enzyme is sensitive to inhibition by phosphate ion and heparin and is partially inhibited by rifamycin SV and synthetic polynucleotides.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献