Aspartate 205 in the Catalytic Domain of Naphthalene Dioxygenase Is Essential for Activity

Author:

Parales Rebecca E.1,Parales Juanito V.1,Gibson David T.1

Affiliation:

1. Department of Microbiology and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa 52242

Abstract

ABSTRACT The naphthalene dioxygenase enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The crystal structure of naphthalene dioxygenase (B. Kauppi, K. Lee, E. Carredano, R. E. Parales, D. T. Gibson, H. Eklund, and S. Ramaswamy, Structure 6:571–586, 1998) indicates that aspartate 205 may provide the most direct route of electron transfer between the Rieske [2Fe-2S] center of one α subunit and mononuclear iron in the adjacent α subunit. In this study, we constructed four site-directed mutations that changed aspartate 205 to alanine, glutamate, asparagine, or glutamine to test whether this residue is essential for naphthalene dioxygenase activity. The mutant proteins were very inefficient in oxidizing naphthalene to cis -naphthalene dihydrodiol, and oxygen uptake in the presence of naphthalene was below detectable levels. The purified mutant protein with glutamine in place of aspartate 205 had identical spectral properties to wild-type naphthalene dioxygenase and was reduced by NADH in the presence of catalytic amounts of ferredoxin NAP and reductase NAP . Benzene, an effective uncoupler of oxygen consumption in purified naphthalene dioxygenase, did not elicit oxygen uptake by the mutant protein. These results indicate that electron transfer from NADH to the Rieske center in the mutant oxygenase is intact, a finding consistent with the proposal that aspartate 205 is a necessary residue in the major pathway of electron transfer to mononuclear iron at the active site.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference48 articles.

1. Ausubel F. M. Brent R. Kingston R. E. Moore D. D. Seidman J. G. Smith J. A. Struhl K. Current protocols in molecular biology. 1993 John Wiley & Sons Inc. New York N.Y

2. Beratan D. N. Onuchic J. N. The protein bridge between redox centers Protein electron transfer. Bendall D. S. 1996 23 42 Bios Scientific Oxford United Kingdom

3. Electron-tunneling pathways in proteins;Beratan D. N.;Science,1992

4. Electron transfer mechanisms;Beratan D. N.;Curr. Opin. Chem. Biol.,1998

5. Mössbauer investigation of the cofactor iron of putidamonooxin;Bill E.;Eur. J. Biochem.,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3