Phosphorylation of Ribavirin and Viramidine by Adenosine Kinase and Cytosolic 5′-Nucleotidase II: Implications for Ribavirin Metabolism in Erythrocytes

Author:

Wu Jim Zhen1,Larson Gary1,Walker Heli1,Shim Jae Hoon1,Hong Zhi1

Affiliation:

1. Drug Discovery, Valeant Pharmaceuticals International, 3300 Hyland Avenue, Costa Mesa, California 92626

Abstract

ABSTRACT Many nucleoside analog drugs, such as ribavirin and viramidine, are activated or metabolized in vivo through 5′-phosphorylation. In this report, we determined the steady-state kinetic parameters for 5′-monophosphorylation of ribavirin and viramidine by adenosine kinase. The apparent K m for ribavirin is 540 μM, and k cat is 1.8 min −1 . Its catalytic efficiency of 3.3 × 10 −3 min −1 · μM −1 is 1,200-fold lower than that of adenosine. In contrast to the common belief that ribavirin is exclusively phosphorylated by adenosine kinase, cytosolic 5′-nucleotidase II was found to catalyze ribavirin phosphorylation in vitro. The reaction is optimally stimulated by the physiological concentration of ATP or 2,3-bisphosphoglycerate. In phosphate-buffered saline plus ATP and 2,3-bisphosphoglycerate, the apparent K m for ribavirin is 88 μM, and k cat is 4.0 min −1 . These findings suggest that cytosolic 5′-nucleotidase II may be involved in ribavirin phosphorylation in vivo. Like ribavirin, viramidine was found to be phosphorylated by either adenosine kinase or cytosolic 5′-nucleotidase II, albeit with a much lower activity. The catalytic efficiency for viramidine phosphorylation is 10- to 330-fold lower than that of ribavirin, suggesting that other nucleoside kinase(s) may be involved in viramidine phosphorylation in vivo. Both ribavirin and viramidine are not phosphorylated by deoxycytidine kinase and uridine-cytidine kinase. The coincidence of presence of high concentrated 2,3-bisphosphoglycerate in erythrocytes suggests that cytosolic 5′-nucleotidase II could play an important role in phosphorylating ribavirin and contribute to anabolism of ribavirin triphosphate in erythrocytes. Elucidation of ribavirin and viramidine phosphorylation mechanism should shed light on their in vivo metabolism, especially the ribavirin-induced hemolytic anemia in erythrocytes.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3