Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression

Author:

Gardel C L1,Mekalanos J J1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

Motility is thought to contribute to the virulence of Vibrio cholerae, but the role it plays in pathogenesis is not completely understood. To investigate the influence of motility on virulence gene expression and intestinal colonization, we have isolated mutants with altered swarming abilities in soft agar medium. Both spontaneous hyperswarmer (exhibiting faster swarm rates) and spontaneous or transposon-induced nonmotile mutants of strain 0395 were obtained. Surprisingly, we found that two of three classes of hyperswarmer mutants were defective in autoagglutination, a phenotype associated with expression of toxin-coregulated pili (TCP), an essential ToxR-regulated colonization factor of V. cholerae. In contrast, nonmotile mutants exhibited autoagglutination under growth conditions that normally repress this phenotype. Further characterization of mutant strains revealed differences in the expression of other virulence determinants. Class I hyperswarmer mutants were defective in production of TCP, cholera toxin, and a cell-associated hemolysin but showed increased levels of protease and fucose-sensitive hemagglutinin. All nonmotile mutants examined, including those with insertions in a sequence homologous to motB, exhibited increased expression of TCP pilin, cholera toxin, and cell-associated hemolysin but dramatically decreased levels of fucose-sensitive hemagglutinin and HEp-2 adhesins. In general, nonmotile mutants displayed few or no defects in intestinal colonization, while class I hypermotile mutants were highly defective in colonization. These results suggest that the motility phenotype of V. cholerae is tightly coupled to the expression of multiple ToxR-regulated and non-ToxR-regulated virulence determinants.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3