Functional Dissection of the Catalytic Carboxyl-Terminal Domain of Origin Recognition Complex Subunit 1 (PfORC1) of the Human Malaria Parasite Plasmodium falciparum

Author:

Gupta Ashish1,Mehra Parul1,Deshmukh Abhijeet1,Dar Ashraf1,Mitra Pallabi1,Roy Nilanjan2,Dhar Suman Kumar1

Affiliation:

1. Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-67, India

2. Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-160 062, Punjab, India

Abstract

ABSTRACT Origin recognition complex subunit 1 (ORC1) is essential for DNA replication in eukaryotes. The deadly human malaria parasite Plasmodium falciparum contains an ORC1/CDC6 homolog with several interesting domains at the catalytic carboxyl-terminal region that include a putative nucleoside triphosphate-binding and hydrolysis domain, a putative PCNA-interacting-protein (PIP) motif, and an extreme C-terminal region that shows poor homology with other ORC1 homologs. Due to the unavailability of a dependable inducible gene expression system, it is difficult to study the structure and function of essential genes in Plasmodium . Using a genetic yeast complementation system and biochemical experiments, here we show that the putative PIP domain in ORC1 that facilitates in vitro physical interaction with PCNA is functional in both yeast ( Saccharomyces cerevisiae ) and Plasmodium in vivo, confirming its essential biological role in eukaryotes. Furthermore, despite having less sequence homology, the extreme C-terminal region can be swapped between S. cerevisiae and P. falciparum and it binds to DNA directly, suggesting a conserved role of this region in DNA replication. These results not only provide us a useful system to study the function of the essential genes in Plasmodium , they help us to identify the previously undiscovered unique features of replication proteins in general.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3