Simple Fibroblast-Based Assay for Screening of New Antimicrobial Drugs against Mycobacterium tuberculosis

Author:

Takii Takemasa12,Yamamoto Yoshifumi1,Chiba Taku1,Abe Chiyoji3,Belisle John T.2,Brennan Patrick J.2,Onozaki Kikuo1

Affiliation:

1. Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya

2. Department of Microbiology, Colorado State University, Fort Collins, Colorado

3. Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Kiyose, Tokyo, Japan

Abstract

ABSTRACT In this study, we propose a simple and reproducible host-cell-based assay for the screening of antimycobacterial drugs that is suitable for drug discovery. The method evaluates both antimycobacterial activity of the drugs and their cytotoxicity to host cells. The basis of this simple fibroblast-based assay (SFA) is that cells of human lung fibroblast cell line MRC-5, which are highly sensitive to mycobacterial cytotoxicity, are killed by virulent Mycobacterium tuberculosis strain H 37 Rv bacilli in response to the viability of bacilli. Clinically used antimycobacterial drugs inhibited the mycobacterial cytotoxicity to MRC-5 cells in a dose-dependent manner. MICs of isoniazid, streptomycin, rifampin, and ethambutol determined by this SFA (0.428, 1.816, 0.013, and 3.465 μg/ml, respectively) were within 1 log of MICs determined by the broth dilution test (BDT) using Middlebrook 7H9 medium. The MIC of pyrazinamide, which exhibits bactericidal activity only at a high dose by BDT (1,231 μg/ml at pH 6.6 and 492 μg/ml at pH 5.8), was 3.847 μg/ml in the modified method of SFA. On the other hand, sodium azide, a toxic agent for both mammalian cells and bacteria, exhibited cytotoxicity to fibroblasts at a dose lower than that required to inhibit mycobacterial growth. Thus, this fibroblast-based method enabled us to evaluate both antibacterial activity of drugs and their cytotoxicity to human cells within a short period of time.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3