The Role of Aldehyde Dehydrogenase and Hsp70 in Suppression of White Spot Syndrome Virus Replication at High Temperature

Author:

Lin Ying-Ru1,Hung Hsiao-Chun2,Leu Jiann-Horng3,Wang Hao-Ching4,Kou Guang-Hsiung1,Lo Chu-Fang1

Affiliation:

1. Institute of Zoology, National Taiwan University, Taipei, Taiwan, Republic of China

2. Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan, Taichung, Taiwan, Republic of China

3. Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China

4. Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China

Abstract

ABSTRACT High temperature (32 to 33°C) has been shown to reduce mortality in white spot syndrome virus (WSSV)-infected shrimps, but the mechanism still remains unclear. Here we show that in WSSV-infected shrimps cultured at 32°C, transcriptional levels of representative immediate-early, early, and late genes were initially higher than those at 25°C. However, neither the IE1 nor VP28 protein was detected at 32°C, suggesting that high temperature might inhibit WSSV protein synthesis. Two-dimensional gel electrophoresis analysis revealed two proteins, NAD-dependent aldehyde dehydrogenase (ALDH) and the proteasome alpha 4 subunit (proteasome α4), that were markedly upregulated in WSSV-infected shrimps at 32°C. Reverse transcription-PCR (RT-PCR) analysis of members of the heat shock protein family also showed that hsp70 was upregulated at 32°C. When aldh , proteasome α4 , and hsp70 were knocked down by double-stranded RNA interference and shrimps were challenged with WSSV, the aldh and hsp70 knockdown shrimps became severely infected at 32°C, while the proteasome α4 knockdown shrimps remained uninfected. Our results therefore suggest that ALDH and Hsp70 both play an important role in the inhibition of WSSV replication at high temperature.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3