Distinctive Effects of the Epstein-Barr Virus Family of Repeats on Viral Latent Gene Promoter Activity and B-Lymphocyte Transformation

Author:

Ali Ahmed K. M.12,Saito Satoru12,Shibata Sachiko2,Takada Kenzo1,Kanda Teru2

Affiliation:

1. Department of Tumor Virology

2. Research Center for Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo 060-0815, Japan

Abstract

ABSTRACT The Epstein-Barr virus (EBV), a human B-lymphotropic gamma herpesvirus, contains multiple repetitive sequences within its genome. A group of repetitive sequences, known as the family of repeats (FR), contains multiple binding sites for the viral trans -acting protein EBNA-1. The FR sequences are important for viral genome maintenance and for the regulation of the promoter involved in viral latent gene expression. It has been reported that a palindromic sequence with a putative secondary structure exists at the 3′ end of the FR in the genome of the EBV B95-8 strain and that this palindromic sequence has been deleted from the FR of the commonly used EBV miniplasmids. For the first time, we cloned an EBV B95-8 DNA fragment containing the full-length FR, which enabled us to examine the functional difference between full-length and deleted FRs. The full-length FR, like the deleted FR, functioned as a transcriptional enhancer of the viral latent gene promoter, but that transactivation was significantly attenuated in the case of the full-length FR. No significant enhancement of replication was observed when the deleted FR was replaced with the full-length FR in an EBV miniplasmid. By contrast, when the same set of FR sequences were tested in the context of the complete EBV genome, the full-length FR resulted in more-efficient B-cell transformation than the deleted FR. We propose that the presence of the full-length FR contributes to the precise regulation of the viral latent promoter and increases the efficiency of B-cell transformation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3