Sindbis virus attachment: isolation and characterization of mutants with impaired binding to vertebrate cells

Author:

Dubuisson J1,Rice C M1

Affiliation:

1. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093.

Abstract

Sindbis virus can infect a broad range of insect and vertebrate cell types. The ability to restrict tissue tropism and target virus infection to specific cell types would expand the usefulness of engineered alphaviruses as gene expression vectors. In this study, virus pools derived from libraries of full-length Sindbis virus cDNA clones containing random insertion mutations in the PE2 or E1 virion glycoprotein gene were screened for mutants defective for binding to vertebrate cells. Binding-competent mutants were depleted by serial adsorption to chicken embryo fibroblast (CEF) monolayers at 4 degrees C, and the remaining population was amplified by immune-enhanced infection of P388D1 cells. From the PE2 libraries, 12 candidate mutants showing reduced cytopathic effects on CEF monolayers were isolated and three representative mutants, NB1, NB2, and NB12, were characterized in detail. Insertion mutations for NB1 and NB12 were found near the PE2 cleavage site, whereas the insertion in NB2 occurred between residues 69 and 74 of E2. Although virion assembly and release occurred normally for all three mutants, PE2 cleavage was completely (NB1) or partially (NB12) blocked for the mutants with insertions near the PE2 cleavage site. Both NB1 and NB2 were defective for binding to CEF and BHK-21 cells. Mild trypsin digestion of isolated NB1 virions resulted in PE2 cleavage and partially restored binding to CEF. Besides defective binding, NB1 also exhibited slower CEF penetration kinetics. Consistent with previous work, these results implicate PE2 cleavage and domains in the N-terminal portion of E2 as important determinants of alphavirus binding and penetration. Binding-defective mutants such as NB2, which exhibit normal particle assembly, release, and penetration, may be useful for future efforts to target Sindbis virus infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference65 articles.

1. Genetic variation among geographic isolates of Rift Valley fever virus;Battles J. K.;Am. J. Trop. Med. Hyg.,1988

2. Animal RNA virus expression systems;Bredenbeek P. J.;Semin. Virol.,1992

3. Structural changes in alphaviruses accompanying the process of membrane penetration;Brown D. T.;Semin. Virol.,1992

4. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate;Chamberlain J. P.;Anal. Biochem.,1979

5. Monoclonal antibodies to Sindbis virus glycoprotein El can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis;Chanas A. C.;J. Gen. Virol.,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3